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Why Does Ga Addition to CIS Limit Its Cell Performance: The Amazing Physics of  
Grain-Boundaries and Killer-Defects in Chalcopyrites 

Alex Zunger 
National Renewable Energy Laboratory, Golden, Colorado, alex_zunger@nrel.gov 

ABSTRACT 

New theoretical studies reveal the way that grain 
boundaries lead to a reduction in electron-hole 
recombination in CIS, and how Ga addition leads to 
cell deterioration largely because of grain-interior (not 
boundary) effects. 

Objectives, Technical Approach & Results 
 Whereas the polycrystalline form of conventional 
semiconductors (Si, GaAs) have poor transport and 
electronic properties relative to their crystalline 
counterparts, surprisingly, poly-crystalline alloys of 
CuInSe2 (CIS; Eg ≈ 1.0 eV) with CuGaSe2 (CGS; Eg ≈ 
1.7 eV) has excellent properties, manifested, among 
others by nearly 20% solar cell conversion efficiency, 
outperforming even its crystalline counterpart.1 In such 
chalcopyrite semiconductors the Group-I and III 
cations replace the two identical Group-II cations of 
zincblende 2ZnSe ≡ Zn2Se2, adding more than 30% 
Ga deteriorates performance.  This intriguing property 
of grain boundaries (GBs) in chalcopyrites has recently 
attracted much attention both because of its relevance 
to solar cell performance and, more generally, 
because of the hope that understanding the underlying 
mechanism at play in polycrystalline chalcopyrites 
might help design benign GB’s in conventional 
polycrystalline semiconductors (e.g. Si and GaAs) to 
the benefit of low-cost devices. 
We have explained theoretically1 why, despite the 

existence of many defects and impurities at the GBs of 
CuInSe2, there appears to be negligible recombination 
of electrons and holes there. Our conclusion is based 
on the analogy between the structure of GB "internal 
surfaces" and the surface structure of CIS films. Total-
energy minimization of the surface structure of CIS2 

showed that in contrast with conventional 
semiconductors such as GaAs, in CIS the polar 
surface is more stable than the non-polar surface. Like 
in GaAs, polar CIS surfaces must reconstruct to 
remove the electrostatic dipole created by the 
alternation of pure cation and pure anion planes along 
the polar axis. This reconstruction involves creating 
rows of either Cu vacancies [in the metal-exposed 
(112) surface] or In-on-Cu antisites [at the subsurface 
of the anion-exposed ( 1 1 2 ) face].  Unlike conven-
tional bulk vacancies, this surface Cu vacancy is 
charge-neutral because its negative (acceptor-like) 
charge has been used to cancel the electrostatic 
dipole. Furthermore, unlike GaAs, this reconstruction 

in CIS costs little energy because the creation of 
vacancies in the weakly bonded Cu sublattice is less 
costly than the creation of Ga vacancies in the strongly 
covalently bonded III-V's. Thus, the interface between 
GB and grain interior (GI) represents an interface 
between two materials of different chemical 
compositions – one strongly Cu poor and one more 
closely Cu stoichiometric. This leads to a band offset 
between the GB and GI involving a (112) lowering of 
the valence band maximum (VBM) at the Cu-poor GB 
[Fig 1(a)]. The calculated GB/GI conduction band 
offset ΔEc in pure CIS was negligible. The reason that 
the Cu-poor material has a lower VBM is that it is 
deprived of Cu d orbitals, which when present, repel 
the Se p based VBM upwards.3 

The predicted existence of a low VBM on the GB side 
causes photogenerated holes to be repelled from the 
GB into the GI. Although, the GB has numerous defect 
recombination centers, the electrons there have no 
holes to recombine with. At the same time, 
recombination in the GI of solar cell quality CIGS is 
rather weak, as most impurities and defects have 
migrated during growth into the GB, leaving the GI 
potentially more perfect and pristine than conventional 
single-crystal CIS. This model1 of charge-neutral hole 
reflector at the GB due to a compositional band offset 
is a new concept, which differs from the conventional 
model of charged GB's. In the latter model, offered 
originally for Si4 and adopted later for II-VI's and 
chalcopyrites,5 one assumes that the GB has a net 
concentration of a charged donors, which causes a 
downward bending of both valence and conduction 
bands. Recent detailed modeling6 has shown, 
however, that even though positive (donor) 
electrostatic charges at the GB will repel holes, they 
will attract electrons sufficiently to raise the electron-
hole n·p product, thus leading to enhanced 
recombination and reduced solar cell efficiency. 
Although charged defects and impurities may exist at 
the GB these do not improve cell efficiencies as 
previously hoped.5 

Our model of GB/GI charge-neutral band offset hole 
reflector was recently studied experimentally7,8 and via 
device simulations.6 Micro Auger electron 
spectroscopy measurements7 found a large (up to 
50%) deficiency of Cu at the CIS grain-boundary, as 
predicted by the polar surface reconstruction model.1 

Pump-power dependent Cathodoluminescence (CL) 
studies8 showed strongly reduced recombination at the 
GB and rapid saturation of the CL energy with power 
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at the GB, indicating the limited supply of one type of 
carrier there. Scanning Tunneling Microscopy (STM) 
scans at low voltage, (when only electrons are injected 
from the tip into the GB) revealed9 a decrease in 
photon emission intensity at the GB when compared to 
GI, demonstrating a reduced hole density at the GB as 
predicted by the model. Two dimensional device 
simulations of the model of neutral offset at the GB/GI 
interface indicate a strongly reduced recombination at 
the GB (on account of a reduced n·p product), leading 
to a significant increase in solar cell efficiency relative 
to a cell having no band offset at the GB/GI interface. 

Figure 1 shows further that: (i) anion-terminated 
GB’s have negligible ΔEv in CIS and CGS; (ii) cation-
terminated CGS has a larger GB ΔEv compared to 
CIS; (iii) the cation-terminated CGS has a large GB 
ΔEc than CIS; (iv) relative cell performance of CIS vs. 
CGS: Three factors are pertinent here: (a) we have 
shown10 that an important reason for the lesser 
performance of Ga-rich (more than 30% Ga) CIGS 
solar cells is due to different behaviors of their GI not 
GB. Both materials exhibit pinning of the Fermi level  

Fig. 1. Band offset energies (in units of eV) of (112) 
cation metal and (112) anion Se terminated surfaces 
of CIS and CGS. The error bar is estimated to 0.05 – 
0.10 eV. 

at about Ev+0.8 eV due to the spontaneous formation 
of electron-annihilating VCu acceptors; however this 
energetic position is 0.9 eV below the CBM of CGS, 
whereas it is only 0.2 eV or less below the CBM of 
CIS. Thus, the maximum attainable voltage is more 
limited in Ga-rich material; (b) At abrupt GI/GB 
interfaces, the carrier transport can be limited by 
tunneling assisted electron-hole recombinations (as in 
conventional charged pn-junctions4). Whereas in CIS 
the energy difference Δg = Ec(GB) – Ev(GI) at the 
charge-neutral GB/GI interface (Fig. 1) nearly equals 
the bulk CIS band gap, in CGS the smaller Δg = 0.6 eV 
at the (112) GB/GI interface will increase 
recombination; (c) The larger ΔEc  in CGS can affect 
Voc: In the space charge region near the CdS/CIGS 
interface, the band profile restricts Voc and thus the cell 
performance.  In CIS ΔEc = 0 (Fig. 1) which does not 
limit Voc. However, in CGS the strong downward band 
bending ΔEc at the GB will affect Voc adversely. Effects 
(a) – (c) lead to a lesser performance of CGS relative 
to CIS. 
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